

| صفحه ۲                | 535C                                            | مهندسی برق (کد ۱۲۵۱)                |
|-----------------------|-------------------------------------------------|-------------------------------------|
| در جلسه آزمون است.    | مضا در مندرجات کادر زیر، بهمنزله عدم حضور شما   | * داوطلب گرامی، عدم درج مشخصات و ا  |
| دن شماره صندلی خود با | اوطلبییکسانبو آگاهی کامل، یکسانبو               | اینجانب با شماره د                  |
| ع و کدکنترل درجشده بر | رود به جلسه، بالای پاسخنامه و دفترچه سؤالات، نو | شماره داوطلبی مندرج در بالای کارت و |

روی جلد دفترچه سؤالات و پایین پاسخنامهام را تأیید مینمایم.

امضا:

زبان عمومی و تخصصی (انگلیسی):

#### **PART A: Vocabulary**

<u>Directions</u>: Choose the word or phrase (1), (2), (3), or (4) that best completes each sentence. Then mark the answer on your answer sheet.

- 1- My mother was a very strong, ..... woman who was a real adventurer in love with the arts and sports.
- consecutive 2) independent 3) enforced 4) subsequent
   The weakened ozone ....., which is vital to protecting life on Earth, is on track to be restored to full strength within decades.
- layer 2) level 3) brim 4) ingredient
   Reading about the extensive food directives some parents leave for their babysitters, I was wondering if these lists are meant to ease ...... feeling for leaving the children in someone else's care.

1) an affectionate 2) a misguided 3) an undisturbed 4) a guilty

- 4- He is struck deaf by disease at an early age, but in rigorous and refreshingly unsentimental fashion, he learns to overcome his ...... so that he can keep alive the dream of becoming a physician like his father.
- ambition 2) incompatibility 3) handicap 4) roughness
   With cloak and suit manufacturers beginning to ..... their needs for the fall season, trading in the wool goods market showed signs of improvement this week.
   anticipate 2) nullify 3) revile 4) compliment
- 6- Sculptors leave highly ...... footprints in the sand of time, and millions of people who never heard the name of Augustus Saint-Gaudens are well-acquainted with his two statues of Lincoln.
- insipid 2) sinister 3) conspicuous 4) reclusive
   To avoid liability, officers were told that they need to ..... closely to established department rules and demonstrate that probable cause for an arrest or the issuance of a summons existed.

### 1) recapitulate 2) confide 3) hinder 4) adhere

## PART B: Cloze Test

<u>Directions</u>: Read the following passage and decide which choice (1), (2), (3), or (4) best fits each space. Then mark the correct choice on your answer sheet.

The first organized international competition involving winter sports ......(8) just five years after the birth of the modern Olympics in 1896. Known as the Nordic Games, this competition included athletes predominantly from countries such as Norway

| ٣   | صفحه                           | 535C                       | مهندسی برق (کد ۱۲۵۱)                                 |
|-----|--------------------------------|----------------------------|------------------------------------------------------|
|     | one time. Figure skating was   | s included in the Olympics | 1926,(9) all but<br>s for the first time in the 1908 |
|     | held until October, some three |                            | ing competition was not actually ts were over.       |
| 8-  | 1) was introducing             | 2) was introd              | duced                                                |
|     | 3) introduced                  | 4) has been i              | introducing                                          |
| 9-  | 1) with Stockholm hosting      | 2) and Stock               | holm hosting                                         |
|     | 3) that Stockholm hosted       | 4) Stockholr               | n hosted                                             |
| 10- | 1) despite                     | 2) although                |                                                      |
|     | 3) otherwise                   | 4) notwithsta              | anding                                               |
|     |                                |                            |                                                      |

## **PART C: Reading Comprehension**

Directions: Read the following three passages and answer the questions by choosing the best choice (1), (2), (3), or (4). Then mark the correct choice on your answer sheet.

## PASSAGE 1:

Electricity and magnetism were regarded as distinct phenomena for quite a while. However, as scientists started studying electrodynamics, they noticed that currentcarrying wires could be affected by magnets, and also that magnetic fields could be generated by currents. Somehow electricity and magnetism were linked. Formally, electromagnetism is the field of physics that looks at how magnetic fields can affect moving electric charges and how changing magnetic fields can induce electric currents. It also looks at how magnetic fields can be generated by electric fields or electric currents. It even explains the origin of electromagnetic radiation. Ultimately, electromagnetism describes electricity and magnetism within one single framework as

When learning about electricity and magnetism, you might hear the term "field" come up a lot. But what is an electric field or a magnetic field? A field is a way to describe the effects or influence that a particular type of force has in a way that is independent of what that force might act upon. For example, the effect of the gravitational force that the Earth exerts on objects in its vicinity can be represented by a vector at each point in space around Earth

| d                                                                                      |  |  |  |  |  |
|----------------------------------------------------------------------------------------|--|--|--|--|--|
| d                                                                                      |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |
| The underlined word "it" in paragraph 1 refers to                                      |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |
| According to paragraph 1, which of the following in away demonstrated that electricity |  |  |  |  |  |
| and magnetism are not unrelated?                                                       |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |
| radiation                                                                              |  |  |  |  |  |
| ••••                                                                                   |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |

two manifestations of the same fundamental electromagnetic force.

| فحه ۴ | صأ |
|-------|----|
|-------|----|

#### 15- According to the passage, which of the following statements is true?

- 1) The effect of the gravitational force that the Earth exerts is greater on the objects which are far away from it.
- 2) A field is said to be the influences of a specific kind of force, dependent on the objects upon which that force may act.
- 3) Electromagnetism presents electricity and magnetism as two aspects of the same fundamental electromagnetic force.
- 4) Electromagnetism is unable to explain the origin of electromagnetic radiation and the way currents are produced.

#### PASSAGE 2:

Graphene could revolutionize future technologies making transparent and flexible solar panels, foldable mobile phones or ultrathin computers a reality. Now researchers from Spain, Germany, and the US think they have taken one of the first important steps along the way. Frank H.L. Koppens of the Institut de Ciéncies Fotóniques (ICFO) in Spain, along with colleagues from MIT and Harvard University have found that graphene is able to <u>convert</u> a single absorbed photon into multiple electrons. Graphene is currently being employed as an alternative to semiconducting materials for light-to-electricity conversion, but the finding indicates that the material could be more efficient than thought.

"In most materials, one absorbed photon generates one electron, but in the case of graphene, one absorbed photon is able to produce many excited electrons, and therefore generate larger electrical signals," explains Koppens. "We have found that this process is very efficient: more than 80% of light energy is converted." Instead of losing excess energy as heat when a photon is absorbed, graphene uses the extra to generate secondary 'hot' electrons. These 'hot' or excited electrons can drive a current, making graphene an alternative material for light harvesting photovoltaic devices or photodetection. The reason for graphene's highly efficient extraction of light energy lies in its unique physical nature. Doped graphene can be thought of as a mixture of a semiconductor, where properties are determined by the behavior of electrons and holes in the conduction and valence bands, and a metal, in which they depend upon the Fermi level.

#### 16- The underlined word "convert" in paragraph 1 is closest in meaning to .....

1) push

2) capture

3) carry

- 4) transform
- 17- According to paragraph 1, what is an already-established function of graphene?
  - 1) A replacement for semiconducting materials in certain cases
  - 2) A new source of generating light without any necessary input
  - 3) A new technology so efficient that it has replaced solar panels of any kind
  - 4) An alternative way of producing mobile phones with minimal cost
- 18- According to paragraph 2, 'hot' electrons ......
  - 1) is the name applied to all electrons generated by graphene
  - 2) are electrons generated by graphene from excess energy otherwise lost as heat
  - 3) refers to a specific type of electron used as an input for graphene with an 80% efficiency
  - 4) play an insignificant role in the final energy efficiency of the devices that use graphene

- 19- What does paragraph 2 mainly discuss?
  - 1) The potential risks of graphene
  - 2) The origin of graphene
  - 3) The advantage of graphene
  - 4) The challenge facing graphene technology

#### 20- The passage provides sufficient information to answer which of the following questions? I. Who discovered graphene?

II. In which country is graphene more commonly used in the industry?

III. Does graphene's failure to extract 100% of light energy make it an inefficient material?

1) I and III 2) Only II 3) I and II 4) Only III

#### PASSAGE 3:

Let's start with the basics. A superconductor is a material where electrical resistance disappears and a magnetic field is created. More simply, when you put electricity into a superconductor, you do not lose any energy—a multimeter would register zero volts and zero ohms on a live circuit— and it becomes a magnet. [1] We have known about superconductors since 1911, when a Dutch physicist named Heike Kamerlingh Onnes observed that when he immersed mercury wire in liquid helium, bringing its temperature down to within just a few degrees of Absolute Zero (-273.15°C or 4.2 Kelvin, to be precise) its electrical properties abruptly changed. He wrote, "Mercury has passed into a new state, which on account of its extraordinary electrical properties may be called the superconductive state." [2] In 1913, he won the Nobel Prize in Physics for his work.

This will not be the only Nobel Prize related to superconductors you will hear about. [3] When experimental physicists prove that something happens, theoretical physicists have to figure out the why of it. A lot of hypotheses were kicked around about superconductivity, as well as suggestions for practical applications. By the 1950s, the US physicists John Bardeen, Leon Cooper, and John Robert Schrieffer had an explanation for low-temperature superconductivity that everyone seems to agree on. [4] Electrons moving through a superconductor can pair up using quantum properties to evade the normal barriers to free movement through a solid. They proved mathematically that this pairing was possible in many substances up to a temperature of around 40 Kelvin, but higher than that the pairs of electrons would be shaken apart by the energy of the warm solid matter. Their work earned them the Nobel Prize in Physics in 1972.

# 21- According to paragraph 1, all of the following is true about Heike Kamerlingh Onnes EXCEPT that ......

- 1) the research leading to his Nobel Prize in physics was conducted sometime in the early 20th century
- 2) after succeeding in discovering the invaluable properties of superconductors, he coined the index ohm to describe one of them
- 3) his studies showed that mercury could transition into a new state, which may be called the superconductive state due to its electrical properties
- 4) when he submerged mercury wire in liquid helium, reducing its temperature to only a few degrees above Absolute Zero, its electrical properties suddenly changed

| (1201 | (کد | برق | مهندسي |
|-------|-----|-----|--------|
|-------|-----|-----|--------|

- 535C
- 22- Which of the following techniques is used in paragraph 1?
- 1) Definition 2) Comparison 3) Classification 4) Exemplification
- 23- According to paragraph 2, which of the following statements is true?
  - 1) Quantum properties prevent electrons moving through a superconductor from pairing up, resulting in their free movement through a solid.
  - 2) When theoretical physicists establish that a phenomenon takes place, experimental physicists enter to clarify the reasons behind it.
  - 3) The explanation offered by the three US physicists for low-temperature superconductivity was quickly rejected by physicists in the 1950s.
  - 4) It was mathematically demonstrated that above 40 Kelvin, the energy from the warm solid matter would disrupt the pairs of electrons.
- 24- In which position marked by [1], [2], [3] or [4], can the following sentence best be inserted in the passage?

Over the next two years, he discovered similar properties in tin, lead, then other metals and alloys including niobium-tin, all when cooled down to almost Absolute Zero. 1) [1] 2) [2] 3) [3] 4) [4]

25- Which of the following best describes the writer's overall tone in the passage?
1) Objective 2) Passionate 3) Humorous 4) Ironic

ریاضیات (معادلات دیفرانسیل، ریاضیات مهندسی، آمار و احتمال):

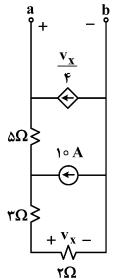
- اگر 
$$\mathbf{x}(\mathbf{p}) = \mathbf{y} + \mathbf{y} + \mathbf{y} + \mathbf{y} + \mathbf{y}$$
 آنگاه ( $\mathbf{x}(\mathbf{p}) = \mathbf{y} + \mathbf{y} + \mathbf{y} + \mathbf{y} + \mathbf{y} + \mathbf{y}$  آ  
 $\frac{-\mathbf{y} - \mathbf{y} + \mathbf{y} + \mathbf{y} + \mathbf{y}}{\mathbf{y}(\mathbf{p} - \mathbf{y})^{\mathsf{Y}}}$  ( $\mathbf{y} - \mathbf{y} + \mathbf{y} + \mathbf{y} + \mathbf{y}$  ( $\mathbf{y} - \mathbf{y} - \mathbf{y} + \mathbf{y}$  ( $\mathbf{y} - \mathbf{y} - \mathbf{y} + \mathbf{y}$  ( $\mathbf{y} - \mathbf{y} - \mathbf{y} + \mathbf{y} + \mathbf{y}$  ( $\mathbf{y} - \mathbf{y} - \mathbf{y} + \mathbf{y} + \mathbf{y}$  ( $\mathbf{y} - \mathbf{y} - \mathbf{y} + \mathbf{y} + \mathbf{y}$  ( $\mathbf{y} - \mathbf{y} - \mathbf{y} + \mathbf{$ 

-۲۷ فرض کنید به ازای مقدار ثابت A، معادله دیفرانسیل  $y'' + Ay = Yxe^{-x^{\gamma}}$  کامل باشد، یعنی بتوان آن را به صورت (A) به مقدار ثابت A، معادله دیفرانسیل  $\frac{d}{dx}(p(x)y' + q(x)y) = r(x)$  کدام است?  $y(x) = r(x) + c_{\gamma} \int e^{x^{\gamma}} dx$  (I)  $y(x) = c_{\gamma}xe^{-x^{\gamma}} + c_{\gamma}e^{-x^{\gamma}} \int e^{x^{\gamma}} dx$  (I)  $y(x) = (x + c_{\gamma})e^{-x^{\gamma}} + c_{\gamma}e^{-x^{\gamma}} \int e^{x^{\gamma}} dx$  (I)  $y(x) = (-x + c_{\gamma})e^{-x^{\gamma}} + c_{\gamma}e^{-x^{\gamma}} \int e^{x^{\gamma}} dx$  (I)  $y(x) = (-x + c_{\gamma})e^{-x^{\gamma}} + c_{\gamma}e^{-x^{\gamma}} \int e^{x^{\gamma}} dx$  (I)

$$\begin{aligned} & -\mathbf{Y} = \mathbf{x} + \mathbf{y} + \mathbf{e}^{\gamma t} \\ & \mathbf{y}' = \mathbf{x} + \mathbf{y} - \mathbf{e}^{-t} \\ & \mathbf{y}' = \mathbf{x} + \mathbf{y} - \mathbf{e}^{-t} \\ & \frac{1}{\mathbf{y}} e^{-t} - \frac{1}{\mathbf{y}} e^{-t} - \frac{1}{\mathbf{y}} e^{-t} \\ & -\frac{1}{\mathbf{y}} e^{-t} + \frac{1}{\mathbf{y}} e^{-t} \\ & -\frac{1}{\mathbf{y}} e^{-t} - \frac{1}{\mathbf{y}} e^{-t} \\ & -\frac{1}{\mathbf{y}} e^{$$

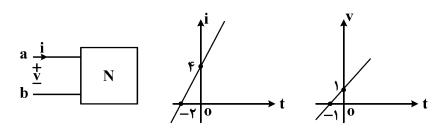
تاس متوقف می یک بودہ است؟ لی تثیجہ پر تاب اول تا عتم با چ ں چہار با س در دو پر ناب روی تا بود. اگر مجموع س، سى

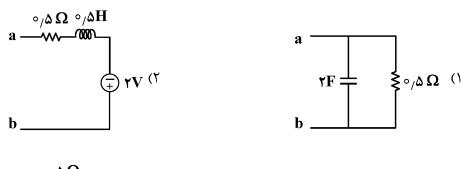
 $\frac{r}{q} (1)$  $\frac{r}{q} (r)$  $\frac{\Delta}{q} (r)$  $\frac{\Delta}{q} (r)$ 

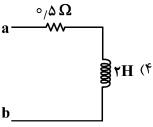

$$\begin{aligned} \begin{array}{l} & \mathsf{T}_{\mathsf{P}}(\mathsf{P}) = \mathsf{P} \in \mathsf{P}_{\mathsf{P}}(\mathsf{P}) = \mathsf{P} : \mathsf{P}(\mathsf{P}) = \mathsf{P} : \mathsf{P}(\mathsf{P}) = \mathsf{P} : \mathsf{P}(\mathsf{P}) = \mathsf{P} : \mathsf{P}(\mathsf{P}) = \mathsf{P}(\mathsf{P})$$

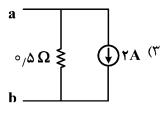
مدارهای الکتریکی (۱ و ۲):

و مدار زیر، به تر تیب، چند ولت و چند اُهم است؟ ( $(R_{Th})$  و مدار زیر، به تر تیب، چند ولت و چند اُهم است? –۴۱

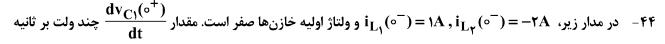


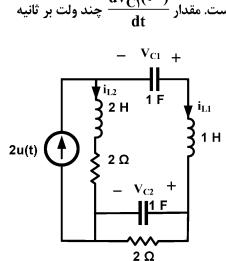


To , 1To (F





صفحه ۱۰

۴۲ - تغییرات ولتاژ و جریان برحسب زمان در یکقطبی N، به صورت زیر داده شده است. کدام مـورد، مـدلی مناسـب برای معرفی این یکقطبی از دو سر ab نیست؟

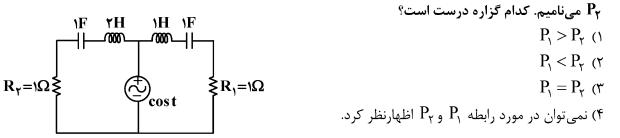







 $\mathbf{F}^{\mathbf{F}} = \mathbf{C}_{\mathbf{V}} = \mathbf{C}_{\mathbf{V}} = \mathbf{C}_{\mathbf{V}} + \mathbf{V}_{\mathbf{V}} + \mathbf{C}_{\mathbf{V}} +$ 



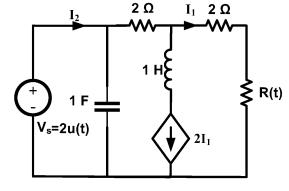



**۴۵**- در مدار زیر، بهازای چه مقداری برای **α**، مدار فرکانس طبیعی مضاعف دارد؟



۴۶ – در مدار زیر، توان متوسط تحویل داده شده به مقاومت  ${f R}_1$  را  ${f P}_1$  و توان متوسط تحویل داده شده به مقاومــت  ${f R}_7$  را



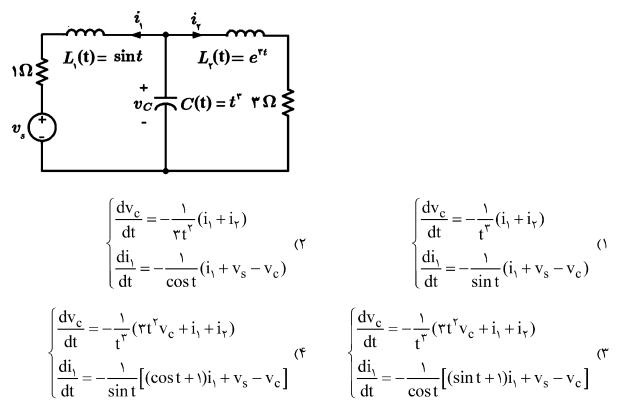

a

a' .

برابر  $\Omega = a \frac{rad}{sec}$  است. امپدانس  $Z_x$  است. امپدانس  $Z_x = \alpha - \frac{rad}{sec}$  است. امپدانس  $Z_x = - \epsilon v$  $(1 \circ -j \tau \Delta) \Omega$  (1  $(\tau \circ + j\tau \Delta) \Omega$  ( $\tau$  $(\tau \circ -i\tau \Delta) \Omega$  ( $\tau$  $(1\circ +jT\Delta)\Omega$  (f  $Z_{in} =$ 

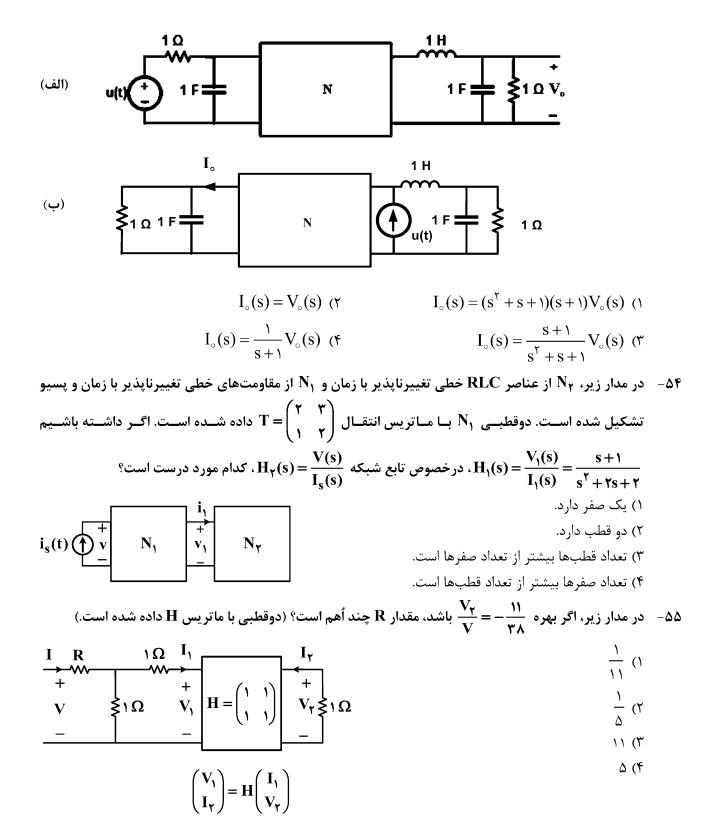
۴۸- ظرفیت خازن معادل از دو سر 'aa، چند فاراد است؟ (ترانسفورماتور ایدهآل است.)

- ۲ (۱
- $n_{1}:n_{\gamma} \stackrel{\bullet}{\Rightarrow} \frac{n_{1}}{n} = \frac{1}{\omega}$ ۳ (۲
  - 4 (٣
  - ۵ (۴
- در مدار زیر، ولتاژ اولیه خازن صفر و جریان اولیه سلف صفر است. مقاومت تغییر پذیر با زمان برابر با R(t) = sin t -49 است. جریان  $I_r(t)$  برای  $\overline{}\circ < t$  کدام است؟
  - $\frac{\varphi u(t)}{\Lambda + \sin t} + \Upsilon \delta(t)$  (1)  $\frac{\vartheta u(t)}{\vartheta + \sin t} + \imath \delta(t)$  ( $\imath$  $\frac{\varphi u(t)}{\Lambda + \cos t} + \gamma u(t)$  ( $\gamma$  $\frac{\varphi u(t)}{\varphi + \cos t} + \gamma \delta(t)$  (§



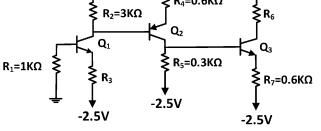

در مدار زیر، عنصر z می تواند یک مقاومت، یک خازن و یا یک سلف باشد. همه عناصر پسیو هستند. کدام گزاره -۵۰ L, نادرست است؟ ത്ത L ۲L# ⊥c<sub>¢</sub>  $L_{F}$ 8 ۱) اگر عنصر z یک خازن باشد، مرتبه مدار ۷ و یک فرکانس طبیعی صفر دارد. ۲) اگر عنصر z یک سلف باشد، مرتبه مدار ۲ و یک فرکانس طبیعی صفر دارد. c, ۳) اگر عنصر z یک مقاومت باشد، مرتبه مدار ۷ و یک فرکانس طبیعی صفر دارد. ۴) مدار هیچگاه فرکانس طبیعی مضاعف موهومی خالص ندارد.

| صفحه ۱۳ |  |
|---------|--|
|---------|--|

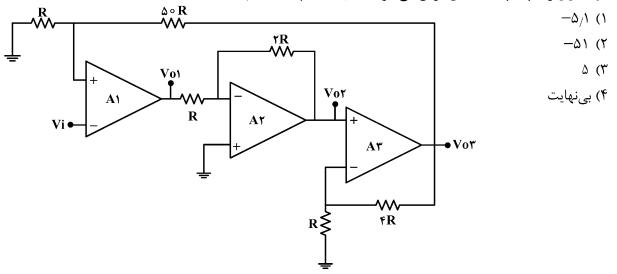

| مختصرشده برای یک گراف به صورت زیر باشد، آنگاه ماتریس تلاقی شاخه با گـره                                                                                                                                                                                                                                                 | ۵۱- اگر ماتریس تلاقی شاخه با مش                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ن، کدام است؟                                                                                                                                                                                                                                                                                                            | مختصرشده برای گراف دوگان آر                                                                                                                                                         |
| [1 0 0 0 1 0 0 -1]                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                     |
| 0 1 0 0 -1 1 0 0                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                     |
| 0 0 1 0 0 -1 1 0                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                     |
| $\begin{bmatrix} 1 & \circ & \circ & \circ & 1 & \circ & \circ & -1 \\ \circ & 1 & \circ & \circ & -1 & 1 & \circ & \circ \\ \circ & \circ & 1 & \circ & \circ & -1 & 1 & \circ \\ \circ & \circ & \circ & 1 & \circ & \circ & -1 & 1 \end{bmatrix}_{F \times \Lambda}$                                                 |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                         | $) \circ \circ -)$                                                                                                                                                                  |
| $\begin{vmatrix} 1 & \circ & 1 & 1 & \circ & \circ & -1 & -1 \end{vmatrix} $ (7                                                                                                                                                                                                                                         |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                         | ◦ −1 1 ◦                                                                                                                                                                            |
| $\begin{bmatrix} \circ & 1 & 1 & 1 & \circ & 0 & 1 & 1 & \circ \\ 1 & 1 & 0 & 1 & -1 & \circ & \circ & 1 \\ 1 & 1 & 0 & 1 & -1 & \circ & \circ & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}_{F\timesA} (Y \qquad \begin{bmatrix} 1 & \circ & \circ & \circ & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$ | $\circ \circ -1  1   _{F \times \Lambda}$                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| Г.,                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |
| $\circ -1 \circ \circ 1 -1 \circ \circ$ (f                                                                                                                                                                                                                                                                              | 0 0 0 1 (1                                                                                                                                                                          |
| $\circ \circ -1 \circ \circ 1 -1 \circ$                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                     |
| $\begin{bmatrix} -1 & \circ & \circ & \circ & -1 & \circ & \circ & 1 \\ \circ & -1 & \circ & \circ & 1 & -1 & \circ & \circ \\ \circ & \circ & -1 & \circ & \circ & 1 & -1 & \circ \\ \circ & \circ & \circ & -1 & \circ & \circ & 1 & -1 \end{bmatrix}_{F \times A} (F)$                                               | ○ <u>)</u> - <u>)</u> ○                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                         | ○ ○ ١ -1                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                         | $\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$ |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |

۵۲- با توجه به مدار زیر، معادلات حالت برای جریان سلف  $\mathbf{i}_{1}$  و ولتاژ خازن  $\mathbf{V_{c}}$  کدام است؟

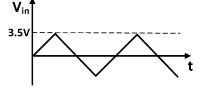


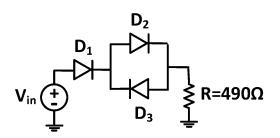

## Telegram: @uni\_k

۵۳- فرض کنید شبکه N دادهشده در شکل، فقط از عناصر خطی تغییرناپـذیر بـا زمـان سـلف و خـازن و مقاومـت و ترانسفورماتور ایده آل تشکیل شده و فاقد منابع مستقل و وابسته است و در هر دو مدار «الـف» و «ب»، در <sup>-</sup>ه در حالت صفر است. اگر در مدار «الف» ولتاژ <sub>۵</sub>۷ را داشته باشیم، در مدار «ب» مقـدار جریـان <sub>۵</sub> I در حـوزه لاپـلاس برحسب <sub>۵</sub>۷، کدام مورد است؟




الکترونیک (۱ و ۲) و سیستمهای دیجیتال ۱:


- $\mathbf{R}_{\pi}$  مقدار مقاومت  $|\mathbf{V}_{\mathrm{BE-on}}| = \circ_{/} \forall \mathbf{V}$  و  $\beta = \infty$  (فعال)،  $\beta = \infty$  مقدار مقاومت  $-3\beta$ (برحسب کیلواُهم) چقدر باشد تا توان متوسط اتلافشده در مقاومت Rγ، برابر ۱۵۰ میکرووات باشد؟
  - 1/0 (1 2.5V 2.5V 2.5V ۲ (۲ **≩** R₄=0.6KΩ ۲/۵ (۳  $R_2=3K\Omega$ ≥R6 ړ ₂0 ۳ (۴  $\mathbf{Q}_1$ Q₃ R₅=0.3KΩ ₹R₃ **≷** R<sub>7</sub>=0.6KΩ

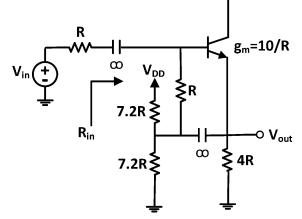



۵۷- در مدار زیر، آپامپها ایده آل فرض می شوند. نسبت Vo۱/Vi کدام است؟



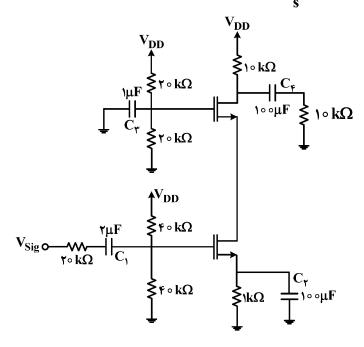
- ۵۸- فرض کنید V<sub>in</sub> یک سیگنال مثلثی متناوب با فرکانس ۱۰۰Hz، همانند شکل زیر باشد. توان متوسط مصرفی توسط مقاومت R، چند میلیوات است؟ (فرض کنید  $V_{D-on}$  دیودها برابر  $VV_{/^{o}}$  باشد.)
  - 4 (1 ۲/۵ (۲
  - ۲ (۳
  - 0/9 (4






- صفحه ۱۶
- ۵۹- با فرض بایاس شدن کلیه ترانزیستورها در ناحیه فعال، ایدهآل بودن منبع جریان و با صرفنظر از r<sub>o</sub> تمامی ترانزیستورها، بهره  $\left| \frac{V_{out}}{V_{in}} \right|$  به کدام مورد نزدیک تر است؟ (فرض کنید ۱۰۰  $\beta = 1$  و  $V_T = \frac{KT}{\alpha}$  است.) ۷۵ (۱ 100 (1 ۱۵ ۰ (۳ Y00 (4

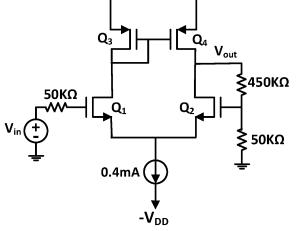
و  $g_m = \frac{1 \circ}{R}$  و  $V_A = \infty$  ،  $\alpha = \circ/99$  (فعال)، به معاومت ورودی  $V_A = \infty$  ،  $\alpha = \circ/99$  ، مقاومت ورودی -9۰ R<sub>in</sub> به کدام مورد نزدیک تر است؟


 $V_{DD}$ 

- $\Delta R$  () rR (1
- ۳°R (۳
  - 10R (4



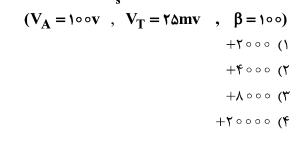
- ۶۱ در مدار زیر، فرکانس قطع پایین، به کدام مورد (برحسب <mark>rad)</mark>) نزدیـکتـر اسـت؟ (فـرض کنیـد g<sub>m</sub> تمـامی s
  - ترانزیستورها، برابر ۱۰mS و ۳<sub>0</sub> = ۳ باشد.) ۱) ۲۲

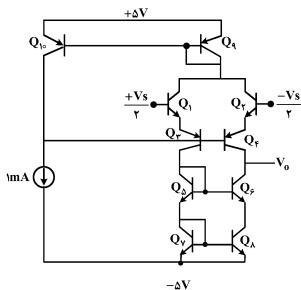

    - ۵۵ (۲
    - 110 (٣
      - 770 (4



۶۲- با فرض بایاس شدن تمامی ترانزیستورها در ناحیه اشباع (فعال)، ایده آل بودن منبع جریان، ۷<sub>۵۷</sub> = ۰٫۲۵۷ و

به کدام مورد نزدیک تر است؟ 
$$\lambda = \circ/1v^{-1}$$
 برای تمامی ترانزیستورها، بهره  $\left| rac{V_{out}}{V_{in}} 
ight|$  به کدام مورد نزدیک تر است؟  
() ۲۱  $V_{
m DD}$ 

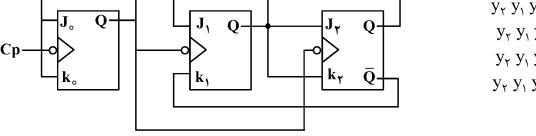

١٢ (١



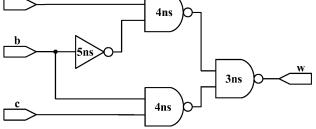

VDD

 $-97 \quad (V_{out}, mX_{out}) \in V_{out}, (V_{out}) = V_{Out}) \quad (V_{CE}(sat) = 0/7V) \quad (SE^{(sat)} = 0/7V) \quad (SE$ 

. در مدار زیر، مقدار بهره ولتاژ $\left(\frac{V_0}{V_s}\right)$  به کدام مـورد نزدیـکتـر اسـت؟ (کلیـه ترانزیسـتورها مشـابه هسـتند.)



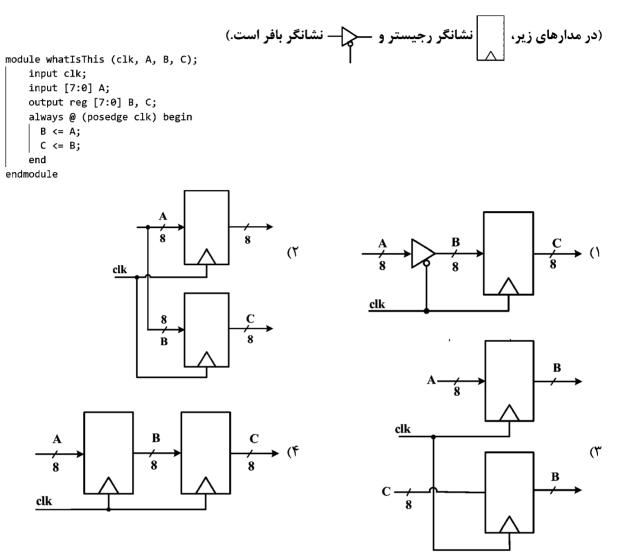




≩\kΩ '

۱∘kΩ

- ۶۵- شمارندهٔ شکل زیر، موردنظر است. اگر در زمانی مقادیر ۱۰۱ = y<sub>۲</sub> y<sub>۱</sub> y<sub>0</sub> باشد، پس از اتمام پالس ساعت بعدی، محتوای شمارنده چه خواهد بود؟ <sub>. ۷</sub> ,  $y_{Y} y_{Y} y_{\circ} = \circ \circ \circ (1)$ Q $y_{\gamma} y_{\gamma} y_{\circ} = \circ 11$  (Y  $y_{\gamma} y_{\gamma} y_{\circ} = 110$  (T
  - $y_r y_y y_o = \circ i \circ i \epsilon$



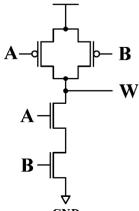

در مدار زیر، یک Hazard و در نتیجه یک glitch (پالس کوتاه) ناخواسته وجود دارد. مشخصات آن کدام است؟ -99 (تأخیر گیتها در شکل مشخص شده است.)



- ۱) هرگاه ۵۱۱ = abc باشند و b از ۱ به ۰ تغییر کند، ۷ns پس از این تغییر یک پالس منفی با اندازه ۵ns در خروجی دیده خواهد شد.
- ۲) هرگاه ۱۱۱ = abc باشند و c از ۰ به ۱ تغییر کند، ۷ns پس از این تغییر یک پالس منفی با اندازه ۵ns در خروجی دیدہ خواہد شد.
- ۳) هرگاه ۱۱۱ = abc باشند و b از ۱ به تغییر کند، ۱۲ns پس از این تغییر یک پالس منفی با اندازه ۵ns در خروجی دیده خواهد شد.
- ۴) هرگاه ۱۱۱ = abc باشند و b از ۱ به ۰ تغییر کند، ۷ns پس از این تغییر یک پالس منفی با اندازه ۱۲ns در خروجی دیده خواهد شد.
- ۶۷- ساختار gate-level دادهشده در شکل (۱) در یک ساختار cascade استفادهشده و مدار شـکل (۲) را میسـازد. ورودی این مدار [۰:۴]a و خروجی آن [۰:۴]wاست. خروجی این مدار پنج بیتی، کدام مورد است؟



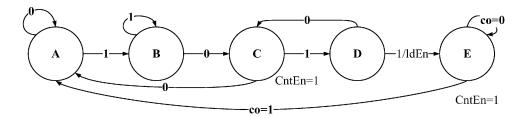
۶۸ کدام مدار، توسط قطعه کد Verilog زیر توصیف می شود؟

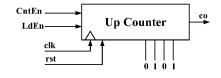



۶۹ – تأخیرهای to ۰، to ۱ و to Z برای ترانزیستورهای nmos و pmos با دید شـبیهسازی در Verilog HDL به تر تیب از قرار زیر هستند:

pmos#( $\mathfrak{r}, \mathfrak{s}, \mathfrak{s}$ ) // (to  $\mathfrak{l}, \mathfrak{to} \circ, \mathfrak{to} Z$ ) nmos#( $\mathfrak{r}, \mathfrak{d}, \mathfrak{v}$ ) // (to  $\mathfrak{l}, \mathfrak{to} \circ, \mathfrak{to} Z$ )

برای یک دروازهٔ NAND دو ورودی CMOS ، بهترتیب بدترین تأخیر برای to ۱ و to ۰ چه مقدار است؟

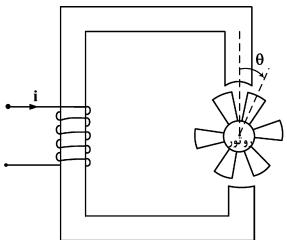

- --




V<sub>CC</sub>

GND

۷۰ - با توجه به ماشین حالت و شمارنده زیر، کدام مورد درست است؟






- ۱) رشته ۱۰۱۱ تشخیص داده می شود و با پیدا کردن رشته به اندازه ۵ کلاک صبرکرده و سپس دوباره به پیدا کردن همین رشته می پردازد.
- ۲) رشته ۱۰۱۱ تشخیص داده می شود و با پیدا کردن رشته به اندازه ۱۰ کلاک صبر کرده و سپس دوباره به پیدا کردن همین رشته می پردازد.
- ۳) رشته ۱۰۱۱ تشخیص داده می شود و با پیدا کردن رشته به اندازه ۱۱ کلاک صبر کرده و سپس دوباره به پیدا کردن همین رشته می پردازد.
- ۴) رشته ۱۰۱۰ تشخیص داده می شود و با پیدا کردن رشته به اندازه ۱۲ کلاک صبر کرده و سپس دوباره به پیدا کردن همین رشته می پردازد.

### ماشینهای الکتریکی (۱ و ۲) و تحلیل سیستمهای انرژی الکتریکی ۱:

- است که در آن،  $k_1 + k_7 \cos(k_{\rm W}\theta)$  است که در آن،  $k_1 + k_7 \cos(k_{\rm W}\theta)$  است که در آن،  $k_1 + k_7 \cos(k_{\rm W}\theta)$  است که در آن،  $k_1 + k_7 \cos(k_{\rm W}\theta)$  مرایب ثابتی هستند. حداقل و حداکثر اندوکتانس به ترتیب برابر  $\gamma$  هانری و ۱ هانری است. اگر جریان ورودی برابر  $\gamma$  ایرابر  $\gamma$  آمپر DC باشد، به ازای  $\theta = 10^\circ$  اندازه گشتاور واردشده به روتور، چند نیوتن ـ متر است? (از مقاومت مغناطیسی آهن صرفنظر می شود.)
  - ٨٥ (١
  - 17 ° (7
  - 740 (1
  - ۴) صفر



535C

۷۲- یک حلقه آهنی به طول متوسط ۲۰ سانتیمتر و ضریب نفوذپذیری مغناطیسی نسبی ۱۰۰، دارای یک فاصله هوایی بهطول یک میلیمتر است. از یک سیم پیچی ۲۰۰ دوری روی حلقه مزبور، ۱/۵ آمپر جریان عبور میدهیم. اگر از شکفتگی شار در فاصله هوایی چشم پوشی و  $\mu_{\circ} = 1^{\circ}$  فرض شود، چگالی شار مغناطیسی در فاصله هوایی برحسب تسلا چقدر است؟ 0/1 (1 °/10 (r °/۲ (۳ 0/8 (4 ۷۳ – یک ژنراتور DC شنت با مقاومتهای آرمیچر و میدان به ترتیب ۱ اُهم و ۴۰ اُهم، یک موتور DC سری را تغذیه میکند. ولتاژ داخلی ژنراتور برابر ۲۲۵ ولت و جریان آرمیچر آن ۲۵ آمپر است. مجموع مقاومتهای آرمیچر و میدان موتور سری برابر ۵/۵ أهم است و بار ۱۰۵ نیوتن ـ متری را درحالت دائمی می چرخاند. اگر از عکسالعمل آرمیچر هر دو ماشین چشم یوشی شود، سرعت موتور درحالت دائمی، چند رادیان برثانیه است؟ 14 (1 77 (7 99 (٣ ۳۸ (۴

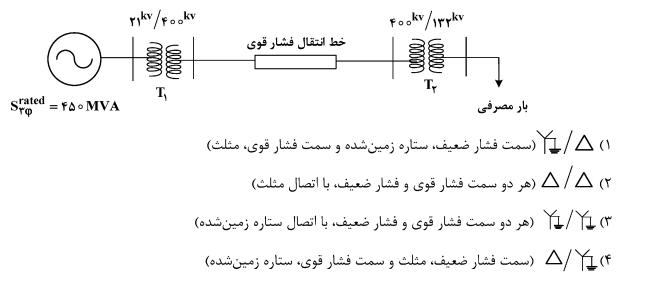
۷۴ – یک موتور DC با تحریک آهنربای دائم به منبع تغذیه ۲۵۰ ولت وصل شده است. موتور بدون بار مکانیکی میچرخد و در این حال، جریان اندکی میکشد و سرعت آن ۲۰۰ رادیان برثانیه است. مقاومت مدار آرمیچر یک اُهم است. اگر بار ۱۰۰ نیوتن ـ متری به موتور وصل شود و از عکسالعمل آرمیچر چشمپوشی شود، سرعت موتور چند رادیان بر ثانیه است؟ ) ۲۰۰

- ۲) ۵ ۱۷
- 188 (8
- 100 (4
- ۷۵- کدام ژنراتور DC ، ضعیفترین تنظیم ولتاژ را عرضه میکند؟

۱) شنت ۲) سری

- ۳) کمپوند اضافی ۲۰۰۰ ۴) کمپوند نقصانی
- ۷۶ یک موتور القایی سهفاز روتور سیمپیچیشده ۲۲۰ اسب بخار، ۵۵هرتز و ۸ قطب برای کنترل یک هواکش به کار میرود. گشتاور هواکش با مربع سرعت تغییر می کند. در بار کامل، لغزش موتور ۴۰ /۰ است. نمودار گشتاور ـ لغزش موتور از بیباری تا بار کامل، خطی است. مقاومت سیمپیچی فاز روتور ۲۰ /۰ اُهم است. برای چرخش هواکش در سرعت ۵۰۰ دور بر دقیقه، چه مقاومتی برحسب اُهم باید به روتور اضافه کرد؟
  - 0/174 (1
  - 0/179 (T
  - 0/144 (٣
  - 0/194 (4

- ٧٧- حداكثر گشتاور يک موتور القايي سهفاز ٨ قطب، ٥٠هرتز برابر ٥٥٥ نيوتن ـ متر است که در سرعت ٧٢٥ دور بر دقیقه رخ میدهد. توان مکانیکی تبدیلشده برای این موتور در سرعت ۸۱۰ دور بر دقیقه، چند وات است؟ (از مقاومت استاتور صرفنظر شود.)
  - $\frac{1\%0\circ\circ}{\pi}$  (1


  - $1700\pi$  (7
  - $1 \circ A \circ \circ \pi$  (r
  - $1\%\% \circ \pi$  (f
- ۷۸ توان عبوری از شکاف هوایی در یک ماشین القایی سهفاز، ۶ قطبی، ۵۰ هرتز در سرعت ۹۵۰ دور بر دقیقه، برابر ۴۰۰ کیلووات و در سرعت ۸۵۵ دور بر دقیقه، برابر ۶۵۵ کیلووات است. نسبت تلفات اُهمی روتور در سرعت ۸۵۵ دور بر دقیقه به تلفات اُهمی روتور در سرعت ۹۵۰ دور بر دقیقه کدام است؟
  - ۲ (۱
  - 4 (1
  - ۶ (۳
    - ۴) ۸
- ۷۹ یک ترانسفورماتور تکفاز ۲۰ کیلوولت ـ آمیر و ۲۵/۲۲۰ ولت در نصف بار کامل دارای تلفات آهنی ۵۰۵ وات است. اگر مقاومت مدار سری ۲ ۰ / ۰ پریونیت باشد، بازده بیشینه این ترانسفورماتور، در چه کسری از بار کامل اتفاق میافتد؟
  - $\sqrt{\frac{r}{r}}$  (1)  $\frac{\sqrt{\Delta}}{r} (r)$  $\frac{\sqrt{\rho}}{r} (r)$  $\frac{\sqrt{\rho}}{r} (r)$
- راکتانس مدار معادل سری یک ترانسفورماتور تکفاز، برابر ۴ ۵٫۰۴ پریونیت است. اگر ثانویه ترانسفورماتور را **−Å**• اتصالکوتاه کنیم، با اعمال ٧٠٦٠٪ ولتاژ نامی اولیه، جریان نامی در آن جاری میشود. تنظیم ولتاژ در بار نامی و ضریب توان ۶/۵ پیشفاز، تقریباً چند درصد است؟
  - 1 ()
  - ۲ (۲
  - ۳ (۳
  - 4 (4

۸۱- یک بار مصرفی تکفاز، توان لحظهای (P(t را در ولتاژ سینوسی با حداکثر دامنه ۵۰۰ ولت دریافت میکند. میزان خازن موازی لازم برای بهبود ضریب توان این بار مصرفی به عدد ۱، چند میکروفاراد است؟ P(t)= ۱۰۰۰π(1+cos(۲۰۰πt+۳۰<sup>°</sup>)+Δοοπsin(۲۰۰π+۳۰<sup>°</sup>]w]

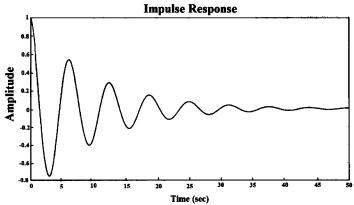
- ۵ (۱
- ۱۰ (۲
- ۲۰ (۳
- 70 (4

 $- \Lambda T = \frac{1}{\sqrt{V_{S}^{pu} + \sqrt{V_{S}^{pu}}} + \frac{1}{\sqrt{V_{S}^{pu}}} + \frac{1}{\sqrt{V_{S}^{pu}}}$ 

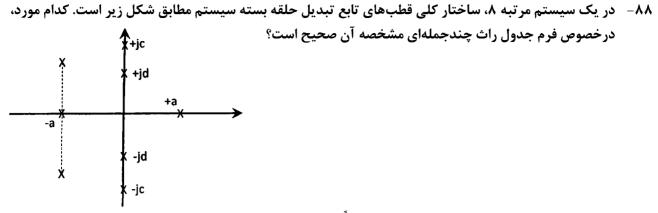
T<sub>1</sub> در مدار شکل زیر که یک سیستم انرژی الکتریکی متعادل سهفاز سینوسی است، چه نوع اتصالی برای ترانسفورماتور م مناسب است؟ (همه ولتاژهای نشاندادهشده از نوع مؤثر خط (فاز \_فاز) هستند.)



- ۸۴- یک سیستم انرژی الکتریکی دارای ۳۹ باس با ماتریس ادمیتانس مشخص است. با اضافه کردن یک خط انتقال جدید بین باسهای ۱۵ و ۱۶، نصب یک خازن موازی بین باس ۱۷ و زمین و اتصال یک بار مصرفی توان ثابت به باس ۱۸، چه تعداد از درایههای ماتریس ادمیتانس باس تغییر میکنند؟
  - ۵ (۱
    - ۴ (۲
  - ۳ (۳
  - ۲ (۴


## Telegram: @uni\_k

535C


#### سیستمهای کنترل خطی:

- ۸۶ در سیستم مکانیکی زیر، تابع تبدیل خروجی زاویه موتور ( $(\theta_m)$ ) به گشتاور موتور (u) کدام است؟  $J_m, B_m$   $G(s) = \frac{kP_m}{P_m P_\ell - k^{\Upsilon}}$  ( $G(s) = \frac{kP_m}{P_m P_\ell + B_\mu P_m}$  ( $G(s) = \frac{KP_\ell}{P_m P_\ell + B_m P_\ell + B_\ell P_m}$  ( $G(s) = \frac{KP_m}{P_m P_\ell + B_m P_\ell + B_\ell P_m}$  ( $G(s) = \frac{kP_m}{P_m P_\ell + B_m P_\ell + B_\ell P_m}$  ( $G(s) = \frac{kP_m}{P_m P_\ell + B_m P_\ell + B_\ell P_m}$  ( $G(s) = \frac{P_\ell}{P_m P_\ell - k^{\Upsilon}}$  ( $F_\ell = J_\ell s^{\Upsilon} + B_\ell s + k$ 

۸۷ - نمودار زیر، پاسخ ضربه کدام سیستم می تواند باشد؟



$$\frac{1}{s^{\gamma} + \frac{1}{s^{\gamma} + \frac{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$



- ۱) جدول، ۹ سطر خواهد داشت و یک سطر کاملاً صفر و یک تغییر علامت در ستون اول نیز خواهد داشت ولی مشخص نیست کدام سطر صفر خواهد شد و تغییر علامت کجا رخ خواهد داد.
- ۲) جدول، ۹ سطر خواهد داشت و صرفاً سطر <sup>(</sup>S آن کاملاً صفر خواهد شد. تا قبل از سطر <sup>(</sup>S هیچ تغییر علامتی نخواهیم داشت و بعد از آن یک تغییر علامت در ستون اول خواهیم داشت.
- ۳) جدول، ۹ سطر خواهد داشت و سطر <sup>s</sup><sup>8</sup> آن کاملاً صفر خواهد شد. تا قبل از سطر s<sup>8</sup> هیچ تغییر علامتی نخواهیم داشت و بعد از سطر s<sup>4</sup> یک تغییر علامت در ستون اول خواهیم داشت.
- ۴) جدول، ۹ سطر خواهد داشت و صرفاً یک سطر متناظر <sup>S</sup>۳ کاملاً صفر خواهد شد. تا قبل از سطر S<sup>۳</sup> هیچ تغییر علامتی نخواهیم داشت و بعد از آن سطر، یک تغییر علامت در ستون اول خواهیم داشت.
  - ۸۹ سیستم حلقه باز زیر با پارامتر نامعلوم a را در نظر بگیرید:

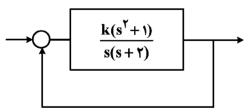
$$L(s) = \frac{s-1\circ}{(s^{\gamma}-f)(s^{\gamma}+1)(s+f^{\gamma})(s+a)}$$

نمودار مکان ریشه برای این سیستم را رسم و مشاهده کردهایم بهازای مقدار بهره K<sub>o</sub> قطبهای حلقه بسته در مکانهای تقریبی زیر قرار گرفتهاند. مقدار تقریبی پارامتر a، کدام است؟

| p <sub>1</sub> | p۲       | p۳       | P۴         | P۵         | p۶  | Y (1 |
|----------------|----------|----------|------------|------------|-----|------|
| ٧/١            | ۵/۱+۲/۶j | ۵/۱–۲/۶j | -%/%+1°/¥j | -%/%-1°/¥j | -14 | ۵ (۲ |

۳ (۳

۴) بدون دانستن 
$${
m K}_{\circ}$$
، نمیتوان مقدار پارامتر  ${
m a}$  را تعیین کرد.

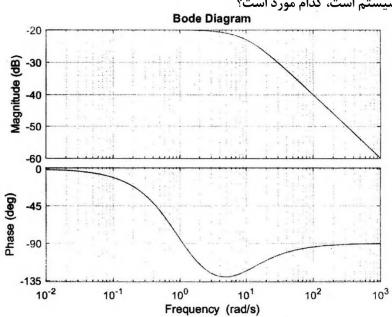

۹۰ - سیستم زیر را در نظر بگیرید. مقدار ریشه که در آن بیشترین حساسیت ریشهها به تغییر بهره حلقه باز وجود دارد، کدام است؟

$$\frac{\sqrt{\Delta} - 1}{r} (r)$$

$$\frac{1 + \sqrt{\Delta}}{r} (r)$$

$$\frac{1 - \sqrt{\Delta}}{r} (r)$$

$$\frac{1 \pm \sqrt{\Delta}}{r} (r)$$




$$(r) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right)^{r} + \frac{1}{2} \left($$

| T V | 1-0-0 |
|-----|-------|
| 1 1 | صفحه  |
|     |       |

| KG(s) و ۱۰٫۰۰۰ = ۱۰٫۱ در نظر بگیرید که یاسخ فرکانسے                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۔<br>۹۲۔ یک سیستم کنترل فیدبک واحد منفی با تابع تبدیل حلقه                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G(s) در جدول زیر داده شده است. کدام مورد در پاسخ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| w(rad/s) mdb ph(deg)<br>0.0100 73.9799 -269.1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $A\sin(1\rho_{1}\Delta t + \theta_{1})$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0264 48.7200 -267.8854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Bsin(1/Vt + \theta_r)$ (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.1129 10.8900 -260.9758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DSII(1/(t+0)) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.1833 -1.6310 -255.4268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C \sin(\Delta/\epsilon t + \theta_r)$ (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.2976 -13.9798 -246.6658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.2743 -46.7026 -192.9119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $Dsin(\lambda_{/}\lambda + \theta_{F})$ (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.0691 -54.6726 -171.6340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.4556 -66.7103 -151.0355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.8587 -72.2737 -156.9430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14.3845 -78.7163 -173.3416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23.3572 -86.8425 -196.2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 100.0000 -120.3385 -249 0988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\mathbf{I} = \mathbf{I} = $ | $f = 1 I(s) - \frac{e^{-s}}{2}$ $f = \frac{1}{2} \int \frac{e^{-s}}{2} \frac{1}{2} \int \frac{1}{2} \frac{1}{2} \int \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \int \frac{1}{2} \frac{1}{2} \frac{1}{2} \int \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \int \frac{1}{2} \frac{1}{$ |
| کنیم، این تمودار چند بار مبدأ صفحه L(s) را بهطور ختائص                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | اگر نمودار نایکوئیست سیستم $L(s) = \frac{e^{-s}}{s+1}$ را رسم –۹۳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | دور میزند؟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ١) صفر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 (۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ۲ (۳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ۴) بینهایت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ست؟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۹۴ - برای سیستم کنترلی زیر، کدام کنترل کننده مناسب ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $G_{c}(s) = \frac{K}{s(s-1)} $ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\mathbf{R}(s) \xrightarrow{+} \mathbf{G}_{\mathbf{c}}(s) \qquad \overline{(s-1)(s+f)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\rightarrow C(s)$ $G_c(s) = \frac{K}{s-1}$ (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $G_{c}(s) = K \frac{s+r}{s+1} (r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $G_{c}(s) = \frac{K}{s+1}$ (f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| واحد در شکل زیـر نشـان داده شـده اسـت. سـاده تـرین                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ۹۵- پاسخ فرکانسی تابع تبدیل حلقه یک سیستم فیدبک                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| واحد در شکل ریے کستان دادہ سے دہ است. سادہ کر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۵۰ - پاسخ قر نامسی نابع تبدیل خلفه یک سیستم قیدبک                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

۹۵- پاسخ فرکانسی تابع تبدیل حلقه یک سیستم فیدبک واحد در شکل زیـر نشـان داده شـده اسـت. سـادهتـرین کنترلکنندهای که قادر به پایدارسازی این سیستم است، کدام مورد است؟ Bode Diagram



535C

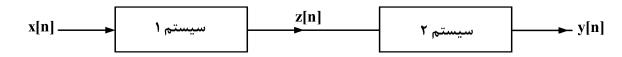
سیگنالها و سیستمها:

سیستم پیوسته زمان D از ترکیب سه زیر سیستم B ،A و C و یک ضرب کننده به شکل زیر ساخته شده است. Dکدام مورد، همواره درست است؟ B ) اگر هر سه زیرسیستم B، B و C خطی و پایدار باشند، آن گاه سیستم D خطی و پایدار است. ۲) اگر هر سه زیرسیستم B،A و C علّی و پایدار باشند، آنگاه سیستم D علّی و پایدار است. ۳) اگر هر سه زیرسیستم B،A و C علّی و وارونیذیر باشند، آنگاه سیستم D علّی و وارونیذیر است. ) اگر هر سه زیرسیستم A، B و C خطی و وارونپذیر باشند، آنگاه سیستم D خطی و وارونپذیر است. ابا  $x_1[n]$  به ورودی  $x_1[n]$  را  $y_1[n]$  و پاسخ یک سیستم پیوسته زمان LTI با  $y_1[n]$  با  $y_1[n]$  اسخ یک سیستم پیوسته زمان  $y_1[n]$ پاسخ ضربه  $h_{Y}[n] = h_{1}[n-\Delta]$  و  $x_{Y}[n] = x_{1}[n-Y]$  مینامیم. اگر بدانیم  $x_{Y}[n] = x_{1}[n-\Delta]$  و  $h_{Y}[n] = h_{1}[n-\Delta]$ ، رابطه بین [n] y<sub>y</sub> [n] و y<sub>y</sub> [n] کدام است؟  $\mathbf{y}_{\mathbf{x}}[\mathbf{n}] = \mathbf{y}_{\mathbf{x}}[\mathbf{n} + \mathbf{v}]$  ()  $y_{r}[n] = y_{n}[n-\tau]$  ( $\tau$  $y_{\mathsf{Y}}[n] = y_{\mathsf{Y}}[n+\mathsf{Y}]$  ( $\mathsf{T}$  $y_{x}[n] = y_{y}[n-Y]$  (§ مرایب سری فوریه سیگنال پیوستهزمان  $x(t) = au \sin{(rac{7\pi}{v}t)}$  و ضرایب سری فوریه سیگنال گسسته زمان -۹۸ ی اگر درست است  $y[n] = r \sin(\frac{r\pi}{r}n)$  را  $b_k$  مینامیم. اگر دوره تناوب هر دو سیگنال ۷ باشد،کدام گزاره درست است  $y[n] = r \sin(\frac{r\pi}{r}n)$  $b_{s} = a_{-1}$  (1)  $b_{\varepsilon} = b_{\gamma}$  (r  $a_{s} = b_{-1}$  (r  $a_{s} = a_{1}$  (f اگر سیگنال مختلط (x(t) دارای تبدیل فوریه به فرم  $X(j\omega) = A(\omega) + j B(\omega)$  (که  $(\omega)$  و  $X(\omega)$  توابع حقیقی از -99 ω هستند) باشد، کدام مورد تبدیل فوریه jIm {x(t) (بخش موهومی (x(t)) را نمایش میدهد؟ (Od: بخش فرد تابع و Ev : بخش زوج تابع را معرفی می کند.)  $j Ev \{B(\omega)\}$  (1)  $Ev \{A(\omega)\} - Od \{B(\omega)\}$  (r  $Od \{A(\omega)\} + jEv \{B(\omega)\}$  (7)  $\operatorname{Re} \{X(j\omega)\} - j\operatorname{Im} \{X(-j\omega)\}$  (\*

535C

-۱۰۰ کدام مورد، تبدیل فوریهٔ (u(t) است؟  

$$\frac{\pi}{\gamma} [\delta(\omega - \omega_{\circ}) + \delta(\omega + \omega_{\circ})] - \frac{j\omega}{\omega^{\gamma} - \omega_{\circ}^{\gamma}} (1)$$


$$\pi [\delta(\omega - \omega_{\circ}) + \delta(\omega + \omega_{\circ})] (7)$$

$$\frac{-j\omega}{\omega^{\gamma} - \omega_{\circ}^{\gamma}} (7)$$

$$\frac{-\omega_{\circ}}{\omega^{\gamma} - \omega_{\circ}^{\gamma}} (9)$$

۱۰۱ سیستم A، عملکرد کمربند ایمنی خودرو در هنگام بستن آن توسط راننده و سیستم B، عملکرد کیسه هوای خودرو در هنگام بستن آن توسط راننده و سیستم B، عملکرد کیسه هوای
 خودرو در هنگام تصادف است. با نگاه فیلتر (پالایه) انتخاب فرکانسی، A و B به تر تیب چگونه هستند؟
 ۱) پایین گذر \_ پایین گذر
 ۲) پایین گذر \_ بالاگذر
 ۳) پایین گذر \_ بالاگذر \_ پایین گذر

 $\varepsilon_{y} = \frac{1}{7\pi} \int_{-\pi}^{\pi} \left| Y(e^{j\omega}) \right|^{7} d\omega$  سیستم زیر را که از دو زیرسیستم ۱ و ۲ تشکیل شده است، درنظر بگیرید. مقدار مقدار –۱۰۲ چقدر است؟



۱ سیستم : 
$$z[n] = x[n] - x[n-1] - z[n-1]$$
  
: سیستم :  $y[n] = y[n-1] + z[n] + z[n-1]$ 

برای سیگنال ورودی: [x[n] = δ[n] + δ[n - ۱] + δ[n - ۲] (۱) ∞

- ۱۰۳- رابطه بین پاسخهای ضربه فیلترهای پایینگذر و بالاگذر ایده آل در دو حالت گسسته و پیوستهزمان، در کدام مورد درست است؟ (در هریک از دو حالت، فرکانس قطع فیلتر پایینگذر با فرکانس قطع فیلتر بالاگذر مساوی است.)  $h_{hp}[n] = h_{lp}[-n] \ e \ h_{hp}(t) = h_{lp}(-t)$   $h_{hp}(t) = h_{lp}(-t)$   $h_{hp}(t) = \delta(t) - h_{lp}(t)$   $h_{hp}(t) = \delta(t) - h_{lp}(t)$   $h_{hp}(t) = (-1)^n h_{lp}[n] \ e \ h_{hp}(t) = (-1) - h_{lp}(t)$  $h_{hp}(t) = (-1) - h_{lp}(t)$  -۱۰۴ تابع تبدیل یک سیستم خطی تغییرناپذیر با زمان به صورت K = K = K = K = K = K است. اگر این سیستم به ازای ورودی (j =  $\sqrt{-1}$  خروجی (t) = sin (t) (می دانیم که  $(1 - \sqrt{-1}) = cos(t)$ (ا)  $\frac{1}{K} e^{-1} = \frac{1}{K} e^{-1}$ (ا)  $-jK = \frac{1}{jK} e^{-1}$ (ا)  $-jK = \frac{1}{K} e^{-1}$ 

۱۰۵- رابطهٔ خروجی برحسب ورودی یک سیستم، به صورت زیر است. این رابطه در حوزه z، با کدام مورد مطابقت دارد؟

$$\mathbf{y}[\mathbf{n}] = \begin{cases} \mathbf{x} \left\lfloor \frac{\mathbf{n}}{\mathbf{y}} \right\rfloor &, \mathbf{n} = \mathbf{Y}\mathbf{k} \,, \mathbf{k} = \circ, \pm \mathbf{1}, \pm \mathbf{Y} \,, \cdots \\ \mathbf{x} \left\lfloor \frac{\mathbf{n} - \mathbf{1}}{\mathbf{y}} \right\rfloor, \, \mathbf{n} = \mathbf{Y}\mathbf{k} + \mathbf{1}, \mathbf{k} = \circ, \pm \mathbf{1} \,, \pm \mathbf{Y} \,, \cdots \end{cases}$$

 $Y(z) = (1 + z^{-1}) X(z)$ (1) Y(z) = (1 + z) X(z)(1)  $Y(z) = (1 + z^{-1}) X(z^{T})$ (1)  $Y(z) = (1 + z) X(z^{T})$ (1)

#### الكترومغناطيس:

بهازای کدام تابع، میدان  $\mathbf{\hat{E}}=\mathbf{y}e^{-\mathbf{x}}\sin x\,\hat{\mathbf{a}}_{\mathbf{x}}+\mathbf{f}(\mathbf{x})\hat{\mathbf{a}}_{\mathbf{y}}$  ساکن را دارا است؟ -۱۰۶

- $f(x) = \frac{1}{r} e^{-x} (\sin x + \cos x) \quad (1)$   $f(x) = \frac{1}{r} e^{-x} (\cos x \sin x) \quad (7)$   $f(x) = -\frac{1}{r} e^{-x} (\sin x + \cos x) \quad (7)$   $f(x) = \frac{1}{r} e^{-x} (\sin x \cos x) \quad (6)$
- ۱۰۷- یک صفحه بینهایت با چگالی بار سطحی  $ho_{
  m s}=
  ho_{
  m s}$  در صفحه xz قرار دارد. شار الکتریکی گذرنده از صفحه مستطیلی نمایشدادهشده در شکل زیر، چه ضریبی از  $ho_{
  m s}$  است؟



 $-\frac{\ln r}{r}$  (r

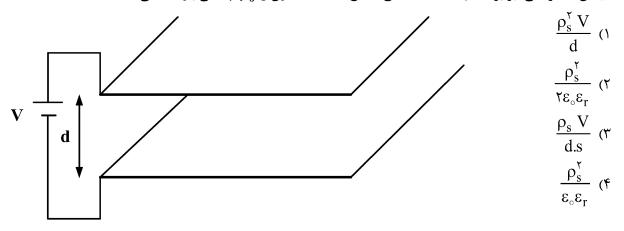
 $\frac{\ln r}{r}$  (r

ln۲

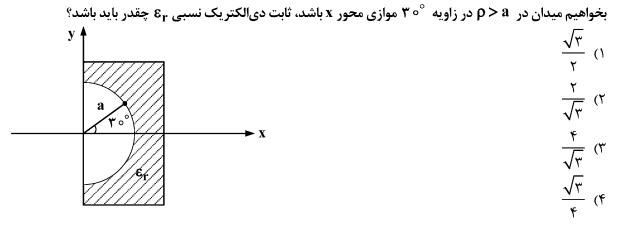
صفحه ۳۱

www.konkur.in

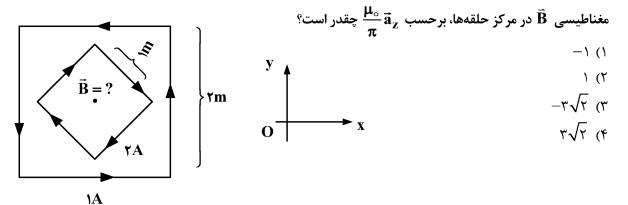
۱۰۸- در شکل زیر، زنجیرهای از بارهای  $\mathbf{q} + \mathbf{q} - \mathbf{q} - \mathbf{r}$  روی یک خط راست، تا بینهایت قرار دارند. فاصله بین دو بار متوالی، a است. کار لازم برای دور کردن بار  $\mathbf{q}_{\mathbf{A}}$  از زنجیر و بردن آن به بینهایت بر حسب  $\frac{\mathbf{q}_{\mathbf{A}}\mathbf{q}}{\pi\epsilon_{o}a}$ , کدام است? +  $\mathbf{q} - \mathbf{q} + \mathbf{q} - \mathbf{q} + \mathbf{q} - \mathbf{q} + \mathbf{q} = \mathbf{q} + \mathbf{q}$  (ln(1+x) =  $\mathbf{x} - \frac{\mathbf{x}^{\mathsf{r}}}{\mathsf{r}} - \frac{\mathbf{x}^{\mathsf{r}}}{\mathsf{r}} - \frac{\mathbf{x}^{\mathsf{r}}}{\mathsf{r}} + \frac{\mathbf{x}^{\mathsf{r}}}{\mathsf{r}} - \frac{\mathbf{x}^{\mathsf{r}}}{\mathsf{r}} + \frac{\mathbf{x}^{\mathsf{r}}}{\mathsf{r}} - \frac{\mathbf{x}^{\mathsf{r}}}{\mathsf{r}} + \frac{\mathbf{x}^{\mathsf{r}}}{\mathsf{r}} - \frac{\mathbf{x}^{\mathsf{r}}}{\mathsf{r}} + \frac{\mathrm{In} (\mathbf{r} - \mathbf{r} + \mathbf{r})}{\mathsf{r}}$ 


$$q A \xrightarrow{q^{T}}_{\pi\epsilon_{o}}, \varphi_{v}, \varphi_{v}$$

۱۱۰- دو حلقه سیمی دایروی هممرکز و همصفحه با شعاعهای ۲<sub>۱</sub> و ۲<sub>۲</sub> در فضای آزاد در دست است. فرض کنید ۲<sub>۲</sub> >>- ۲<sub>۲</sub> باشد. ضریب القای متقابل M برحسب هانری بین این دو حلقه کدام است؟


$$M = \frac{\tau \pi \mu_{\circ} r_{\gamma}^{\gamma}}{r_{\gamma}} (1)$$
$$M = \frac{\pi \mu_{\circ} r_{\gamma}^{\gamma}}{\tau r_{\gamma}} (\tau)$$
$$M = \frac{\tau \pi \mu_{\circ} r_{\gamma}^{\gamma}}{r_{\gamma}} (\tau)$$
$$M = \frac{\pi \mu_{\circ} r_{\gamma}^{\gamma}}{\tau r_{\gamma}} (\tau)$$

www.konkur.in


-۱۱۱ دو صفحه یک خازن بهفاصله d از یگدیگر قرارگرفتهاند. فشار وارده بر هرکدام از صفحات خازن در اثر اعمال میدان الکتریکی، برابر کدام است؟ (s سطح مقطع صفحات خازن و ρ<sub>s</sub> چگالی بار سطحی صفحه است.)



۱۱۲ - در شکل زیر، میدان الکتریکی در نقطه برابر ۴â<sub>φ</sub> –۴â است ( p و φ مختصات دستگاه استوانهای است). اگر



۱۱۳- مطابق شکل زیر، دو حلقه هادی مربعشکل بهصورت هممرکز در صفحهٔ xoy قرار دارند. طول ضلع حلقهٔ کوچک تر ۱۳ و حلقه بزرگ تر ۲۳ است. اگر از حلقه کوچک تر، جریان ۲ آمپر و از حلقه بزرگ تر، جریان یک آمپر عبور کند، چگالی شار



www.konkur.in

- -11۴ adly ignored by the set of the set of
- ۱۱۵- شدت میدان مغناطیسی نامتغیر با زمان در مختصات استوانهای بهصورت  ${ar{H}}=e^{-p}\hat{\phi}$  داده شده است. چگالی جریان الکتریکی که این میدان مغناطیسی را ایجاد کرده است، کدام است؟

$$e^{-\rho}(1-\rho)\hat{z} (1)$$

$$e^{-\rho}(1-\rho)\hat{\varphi} (7)$$

$$\frac{e^{-\rho}(1-\rho)}{\rho}\hat{\varphi} (7)$$

$$\left[e^{-\rho}(\frac{1-\rho}{\rho})\right]\hat{z} (7)$$

مقدمهای بر مهندسی زیست پزشک*ی:* 

**۱۱۶- بیخطر بودن کاشتنیهای ارتوپدی در بدن از لحاظ بیولوژیکی در مدتزمان عملکرد آن، نشانگر کدام مفهوم است؟** Bio adhesion (r Bio inert () Bio Compatibility (\* Blood Compatibility ( **۱۱۷- کدام ویژگی، مربوط به دیالایزر با صفحات موازی نیست؟** ۲) حجم اوليه خون کم ۱) مقاومت یایین ۴) نرخ فیلتراسیون قابل ییش بینی ۳) سیستم تبادل همسو ۱۱۸− در ECG یک بیمار، کمپلکس QRS، ۳۰ میلیثانیه طول کشیده است. دامنهٔ ثبتشده از آن یک میلیولت است. در این مدت، چند یون کلر وارد بدن شده یا از بدن خارج می شود؟ (هر آمیر = <sup>۱۸</sup> × ۶/۲۴ الکترون در ثانیه و مقاومت هادی حجمی یک مگا اُهم فرض شود.) () <sup>6</sup> ما×۱۸۷ \_ وارد ۲) <sup>۲</sup>۰۱×۱۸۷ \_ خارج 3,10- TVF×108 (T ۴) <sup>۲</sup>۰۱×۳۷۴ \_ خارج

| <b>ینده باید کدام مشخصات را داشته باشد؟</b>      | ۱۱۹ - در ثبت سیگنال در الکتروانسفالوگرام، تقویت کننده باید کدام مشخصات را داشته باشد؟ |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| ۲) CMRR بالا ـ بهره کم                           | CMRR (۱ بالا ـ بهره زیاد                                                              |  |  |
| ۴) CMRR کم ـ بهره کم                             | ۳) CMRR کم ـ بهره زیاد                                                                |  |  |
|                                                  | <b>۱۲۰</b> - استرینگیج، براساس کدام مورد کار میکند؟                                   |  |  |
| ۲) سطح تماس متغیر                                | ۱) خازن متغیر                                                                         |  |  |
| <b>۴)</b> مقاومت متغير                           | ۳) اندوکتانس متغیر                                                                    |  |  |
| ، برابر با چند هرتز است؟                         | <b>۱۲۱- فرکانس قطع در یک ترانسدیوسر پیزوالکتریک،</b>                                  |  |  |
| ر π ≃ ۳) (π ≃ ۳) (π ≃ ۲)                         | (ظرفیت خازن= پیکوفاراد ۵ <b>۵٬، امپدانس ورود</b> ی                                    |  |  |
|                                                  | ۹۲/۵ (۱                                                                               |  |  |
|                                                  | 180/A (8                                                                              |  |  |
|                                                  | ۵۸۱ (۳                                                                                |  |  |
|                                                  | ۳۷۰ (۴                                                                                |  |  |
| تور رابطه غیرخطی دارد؟                           | ۱۲۲ - تغییر اندوکتانس یک سنسور القایی، با کدام فاک                                    |  |  |
| ۲) تعداد دور سيمپيچ                              | ۱) شکل هندسی                                                                          |  |  |
| ۴) عایق <i>ک</i> اری سیمها                       | ۳) نفوذپذیری محیط                                                                     |  |  |
| <b>CMR بالا، کدام مورد م<i>ی ت</i>واند باشد؟</b> | ۲۳− مهم ترین دلیل استفاده از تقویت کنندههای با R                                      |  |  |
| ۲) حذف نویز مشترک                                | ۱) بهره بالا                                                                          |  |  |
| ۴) امپدانس ورودی تفاضل بالا                      | ۳) حذف کلیه نویزها                                                                    |  |  |
| اندازهگیری کدام مورد استفاده میشود؟              | ۱۲۴- الکترو رتینوگرام در هنگام تحریک بینایی، برای                                     |  |  |
| ۲) اندازه مردمک                                  | ۱) حرکت چشم                                                                           |  |  |
| ۴) فعالیت الکتریکی کورتکس بینایی                 | ۳) فعالیت الکتریکی شبکیه                                                              |  |  |
| ییتی دارد؟                                       | <b>۱۲۵- امپدانس تماسی در الکترودهای مکشی، چه وض</b>                                   |  |  |
| ۲) پایین                                         | ) بالا                                                                                |  |  |
| ۴) قابل صرفنظرکردن                               | ۳) صفر                                                                                |  |  |

Telegram: @uni\_k

Telegram: @uni\_k